1. Give a brief description of the following terms:
 (1) Recursion (5%)
 (2) Iterator (5%)
 (3) Priority queue (5%)
 (4) Hash table (5%)

2. A binary tree can be represented by an array with the following procedures:
 ROOT(): return 1
 LEFT-CHILD(i): return 2i
 RIGHT-CHILD(i): return 2i + 1
 PARENT(i): return \[\lfloor i/2 \rfloor\]
 (1) Show that \(i \leq 2^n - 1 \) for a binary tree with \(n \) nodes. (10%)
 (2) Give an example of a binary tree with five nodes that attains the above upper bound on \(i \). (10%)

3. The following procedure BUILD_MAX_HEAP can be used in a bottom-up manner to convert an array \(A[1...n] \), where \(n = length[A] \), into an \(n \)-element max-heap. Please answer the following questions.

```plaintext
BUILD_MAX_HEAP(A):
    heap_size[A] ← length[A]
    for i ← \( \lfloor length[A]/2 \rfloor \) downto 1
        do MAX_HEAPIFY(A, i)

MAX_HEAPIFY(A, i):
    l ← 2i
    r ← 2i + 1
    if \( l \leq \text{heap_size}[A] \) and \( A[l] > A[i] \) then
        largest ← l
    else largest ← i
    if \( r \leq \text{heap_size}[A] \) and \( A[r] > A[\text{largest}] \) then
        largest ← r
    if largest ≠ i then
        MAX_HEAPIFY(A, largest)
```

本試題兩面印刷
(1) Suppose that the array $A = \langle 34, 5, 75, 9, 18, 2, 26, 67, 23, 10 \rangle$. Please show the resultant max-heap A after performing the `BUILD_MAX_HEAP(A)` procedure. (15%)

(2) Write a pseudo-code, called `HEAP_SORT`, which can reorder an array A of n numbers in an ascending order based on the procedures `BUILD_MAX_HEAP` and `MAX_HEAPIFY`. (15%)

(3) What is the worst-case running time of your algorithm? (10%)

4. The Prim’s algorithm MST-Prim(G, w, r) is a method for minimum spanning tree problems. Please illustrate the execution of the Prim’s algorithm (starting from the root vertex r) step by step on the graph G shown in Figure 1. (20%)

```
MST-Prim($G, w, r$):
    for each $u \in V(G)$ do // $V$ is a set of all vertices in graph $G$.
        $key[u] \leftarrow \infty$ // $key[u]$ is the minimum weight of any edge connecting
                        // $u$ to a vertex in the tree $A$.
        $p[u] \leftarrow NIL$ // $p[u]$ denotes the parent of $u$.
        $key[r] \leftarrow 0$
    $Q \leftarrow V[G]$ // $Q$ is a min-priority queue.
    while $Q \neq \emptyset$
do
        $u \leftarrow$ Extract-Min($Q$)
        for each $v \in Adj[u]$ do // $Adj[u]$ denotes the set of all vertices adjacent to $u$.
            if $v \in Q$ and $w(u, v) < key[v]$ then // $w(u, v)$ is the weight associated with
                        // the edge $(u, v)$.
                $p[v] \leftarrow u$
                $key[v] \leftarrow w(u, v)$
```

Figure 1. Weighted graph G.

本題兩面印刷